Top 100 in Physics – 2022に選出

OBのTuo Fan氏下記の論文がScientific Reports誌のTop 100 in Physics – 2022 (Rank 13th/100)に選出されました。おめでとうございます!

Tuo Fan, Nguyen Huynh Duy Khang, Soichiro Nakano, Pham Nam Hai, “Ultrahigh efficient spin orbit torque magnetization switching in fully sputtered topological insulator and ferromagnet multilayers”, Scientific Reports 12, 2998 (2022).

『スピントロニクスハンドブック』の発刊

Pham准教授がスピンホール効果材料としてのトポロジカル絶縁体について担当執筆した『スピントロニクスハンドブック』が発刊されました。この本は日本全国のスピントロニクス研究者が最先端の研究についてまとめたハンドブックです。初心者の勉強に最適です。Pham研に1冊があるので、貸し出しができます。

https://www.nts-book.com/978-4-86043-842-5/

 

スピントロニクスハンドブック

発刊日:2023年5月23日

定 価:77,000円(税込)

頁 数:760ページ

2023年の新メンバー

新しいM1の齋藤君、B4の江尻君、B4の李君が研究室に参加しました。また、加々美君がM1に進学しました。皆さんのご活躍を期待します!

2022年度の優秀修士論文賞を受賞!

Ho Hoang Huy君(9月卒業)の修士論文「Optimization of spin Hall angle and inverse spin Hall angle in top BiSb/ferromagnet with in-plane magnetization」が2022年度の優秀修士論文賞を受賞しました。2023年3月27日の卒業式に表彰されました。おめでとうございます!

2022年度の卒業式

M2のHuy君(9月卒業)、遠藤君、Tran君、B4の加々美君と有川君が無事に卒業しました。おめでとうございます!

応用物理学会講演奨励賞の記念講演

上智大学で開催された第70回応用物理学会春季学術講演会で特任助教の白倉さんは応用物理学会講演奨励賞の記念講演を行いました。

[16p-D704-7] [第53回講演奨励賞受賞記念講演] ハーフホイスラー型トポロジカル半金属を用いた配線工程耐性を有する超高効率純スピン流源の開発
〇白倉 孝典、脱 凡、グエン フン ユイ カン、ファム ナム ハイ


応用物理学会会長の平本 俊郎先生から賞状を受け取った写真

白倉さんの博士号修得

D3の白倉さんが3ヶ月短縮で博士号を修得し、特任助教に就任しました。おめでとうございます!今後のご活用を期待します。

論文掲載:室温強磁性半導体によるスピン注入の初実証

室温強磁性半導体によるスピン注入の初実証に関する研究成果はScientific Reports誌に掲載されました。本研究は東京大学との共同研究の成果です。

Shobhit Goel, Nguyen Huynh Duy Khang, Yuki Osada, Le Duc Anh, Pham Nam Hai & Masaaki Tanaka, “Room-temperature spin injection from a ferromagnetic semiconductor”, Scientific Reports, 13, 2181 (2023).

室温強磁性半導体の実現は固体物性と材料科学において、長年の夢の一つです。たとえば、2005年のScience誌に“Is it possible to create magnetic semiconductors that work at room temperature?”は125重要課題の一つとして掲載されています(125 big questions that face scientific inquiry over the next quarter-century. Commemorative issue celebrating the 125th anniversary of the science magazine)。しかし、今迄に研究された強磁性半導体、たとえばGaMnAsは室温よりキュリー温度が低く、室温動作が極めて困難でした。一方、我々はFe系強磁性半導体を提案し、2012年に世界初のn型強磁性半導体InFeAs, 2014年にp型室温強磁性半導体GaFeSb、さらに2018年にn型室温強磁性半導体InFeSbを実現してきました。しかし、以前にも、室温強磁性半導体を主張した研究も多くあり、その起源が未解明なものがほとんどであり、本当に真性な室温強磁性半導体が出来たのか、それとも半導体中の単なる磁性偏析の粒子だけなのか、議論が多くありました。一時期には、強磁性半導体の研究に対する不信感から、UMO (Unidentified Magnetic Object)と批判されてきました。ちなみに、高温超伝導でもUSO (Unidentified Superconducting Object)という言葉もあり、先日にNature誌に掲載された室温超電導の論文が取り下げられたばかりです。強磁性半導体においても、本当に室温強磁性ができたかどうか、単に磁性の評価だけでなく、他面的に証明する必要がありました。

今回に我々は室温強磁性半導体GaFeSbを用いて、重要な機能の一つ「スピン注入機能」をスピンポンピング法およびトポロジカル絶縁体BiSbの巨大な逆スピンホール効果を用いて実現しました(図1)。これにより、我々が開発に成功した強磁性半導体はちゃんと室温でスピン注入源として動作できることを示し、真性な室温強磁性半導体であることを示しました。

図1.BiSbトポロジカル絶縁体/GaFeSb強磁性半導体におけるスピンポンプピングによるスピン注入および逆スピンホール効果による起電力の発生。

論文掲載:超高密度磁気記録4 Tbit/in2に向けた新しい磁気センサー技術

超高密度磁気記録4 Tbit/in2に向けた新しい磁気センサー技術「SOTセンサー」に関する研究成果がApplied Physics Letters誌に掲載されました。本研究はスト―レージ大手メーカのWestern Digitals社との共同研究の成果です。

Ho Hoang Huy, Julian Sasaki, Nguyen Huynh Duy Khang, Shota Namba, Pham Nam Hai, Quang Le, Brian York, Cherngye Hwang, Xiaoyong Liu, Michael Gribelyuk, Xiaoyu Xu, Son Le, Michael Ho, and Hisashi Takano, “Large inverse spin Hall effect in BiSb topological insulator for 4 Tb/in2 magnetic recording technology”, Appl. Phys. Lett. 122, 052401 (2023).

従来のTMR効果を用いたTMRセンサーは限界に向かいつつあります。これは、TMRセンサーには、固定層を含み、最低でも2の磁性層が必要なため、20 nm以下の微細なデバイスの作製が困難な他、熱雑音やスピン移行トルク雑音が増大するためです。そこで、逆スピンホール効果を用いるSOTセンサー(図1)を用いれば、TMRセンサーの問題点を解決できます。しかし、SOTセンサーを実現するためには、高いスピンホール効果を有する材料が必要です。従来の重金属を用いると、SOTセンサーの高いSNR比を実現できません。そこで、Pham研究室で開発したBiSbトポロジカル絶縁体を用いれば、高いSNR比を実現できることを理論的に示し、かつその実証を行いました。本研究成果により、超高密度磁気記録4 Tbit/in2の実現が大きく前進します。

図1:SOTセンサーの構造

論文掲載:300℃で低温成長したYPtBiの巨大なスピンホール効果を実現

Si Back-end-of-line (BEOL)プロセスに適応すべく300℃で低温成長したYPtBiの巨大なスピンホール効果を実現した研究成果はAIP Advances 誌(オープンアクセス)に掲載されました。

Takanori Shirokura and Pham Nam Hai, “Giant spin Hall effect in half-Heusler alloy topological semimetal YPtBi grown at low temperature”, AIP Advances 12, 125116 (2022).

YPtBiはトポロジカルハーフホイスラ合金で、高いスピンホール効果と高い熱耐久性を両立できる物質であり、スピン軌道トルクスピンデバイスのスピン流源として有望です。しかし、YPtBiはゼロギャップ半導体のため、バルクのキャリアを抑制するために、600℃の高温で製膜する必要がありました。今回の研究では、半導体Si回路のBEOLプロセスに適応できる温厚な温度300℃でもYPtBiを製膜できる条件を見だして、巨大なスピンホール効果を実現しました。

なお、本研究はキオクシア社から支援を得て行った研究です。

過去ニュース

クイックアクセス