Home » 論文
Category Archives: 論文
論文掲載:3次元磁性細線メモリに向けたALD成膜Ptのスピンホール効果の評価
3次元磁性細線メモリに向けたALD成膜Ptのスピンホール効果の評価に関する下記の研究成果がApplied Physics Letter誌に掲載された。
3次元の磁性細線メモリを実現するためには、スパッタリング成膜だけでは実現不可能のため、3次元成膜が可能なALD法を用いて、磁性層およびSOT層を成膜する必要がある。今回の研究では、SOT層として期待されているPtをALD法を用いて成膜し、そのスピンホール効果を評価した。
論文掲載:BiSbトポロジカル絶縁体/CoFeB/MgO垂直磁化膜における高スピンホール角と低電流磁化反転の実証
BiSbトポロジカル絶縁体/CoFeB/MgO垂直磁化膜における高スピンホール角と低電流磁化反転の実証に成功した研究成果がApplied Physics Letters誌に掲載されました。本研究成果は米ウェスタインデジタル社との共同研究の成果です。
BiSbトポロジカル絶縁体は巨大なスピンホール角を示す高性能なスピンホール材料です。一方、CoFeB/MgO垂直磁化膜はMRAMの標準的な自由層です。本研究では、SOT-MRAMの実現に向けて、低電流書き込み用のBiSbと高性能読み出し用のCoFeB/MgO垂直磁化膜の間に、適切な中間層を挿入することによって、高スピンホール角と低電流磁化反転の実証に成功しました。
論文掲載:トポロジカル半金属YPtBi/CoPt接合におけるポストアニール効果
トポロジカル半金属YPtBi/CoPt接合におけるポストアニール効果に関する研究成果がJapanese Journal of Applied Physics誌に掲載されました。
本研究では、YPtBi/CoPt接合を高温300℃までポストアニールすると、CoPtの磁気特性およびYPtBiのスピンホール特性が向上したことを明らかにした。また、YPtBi/CoPt接合はW/CoPt接合よりも高い熱耐久性があることも示した。
論文掲載:トポロジカル半金属YPtBiのSiOx/Si基板上への成膜とスピンホール特性評価
トポロジカル半金属YPtBiのSiOx/Si基板上への成膜とスピンホール特性評価に関する研究成果がApplied Physics Letters誌に掲載されました。
トポロジカル半金属YPtBiは高い熱耐久性と高いスピンホール角を両立できる材料としてSOT-MRAMのスピンホール層として有望である。今回の研究では、実用的な基板であるSiOx/Si基板上への成膜およびスピンホール特性評価を行った。その結果、YPtBiが(110)配向するとともに、スピンホール伝導率がYPtBi(111)よりも高いことを見出した。
論文掲載:スピンホール効果を高温で増大させる新原理を発見
スピンホール効果を高温で増大させる新原理を発見した研究成果がApplied Physics Letters誌に掲載されました。
内因性のスピンホール伝導率の大きさはバンド構造の幾何学的位相である「ベリー位相」の効果により決まる。従来の研究より、多くの金属材料のスピンホール伝導率は不純物や温度によらず一定であることが知られている。今回の研究では、TaSi2という物質において、ベリー位相の強い発生源であることが知られているバンドの縮退点(ベリー位相のモノポール)をフェルミレベル近傍に配置することで、高温においてスピンホール伝導率を増大させる新原理の実証に成功した。本研究成果により、SOT方式を利用した超低消費電力な磁気抵抗メモリの高温での性能の改善が期待できる。
(a)TaSi2が持つカイラル構造。(b)スピン軌道相互作用を考慮して、第一原理計算により計算されたバンド図。青い矢印はフェルミレベル近傍のディラックポイントを指す。(c)スパッタリング法で製膜したスタックの構造図。(d)スピンホール伝導率の温度依存性。赤い点線はディラックポイントの寄与を考慮したモデルによる理論曲線。
論文掲載:BiSb/酸化物中間層/CoFeB/MgOにおける垂直磁気異方性とSOT磁化反転の実現
BiSb/酸化物中間層/CoFeB/MgOの構造において、垂直磁気異方性と高効率のSOT磁化反転を実現した論文がIEEE Transactions on Magneticsに掲載されました。本論文は日本サムスンとの共同研究の成果です。
絶縁体の中間層を用いることで、(1) Sbの拡散防止、(2)磁性層へのシャント電流の防止などのメリットがあります。本研究では、CoFeB/MgOに対して、1 nm CrOxが有効な絶縁体の中間層を見だしました。
論文掲載:高温領域(>120℃)におけるBiSbトポロジカル絶縁体のスピンホール効果
高温領域(>120℃)におけるBiSbトポロジカル絶縁体のスピンホール効果を評価した研究成果がApplied Physics Letters誌に掲載されました。
自動車や人工衛星など、過酷な環境に使える不揮発性メモリを実現するためには、高温領域(>120℃)において、動作できることが求められます。今回の研究では、BiSbトポロジカル絶縁体のスピンホール効果を125℃までの高温領域で評価を行いしました。その結果、125℃の高温でもBiSbが巨大なスピンホール効果を維持し、過酷な環境に使える不揮発性メモリSOT-MRAMに応用できることを示しました。また、スピンホール効果の温度依存性から、巨大なスピンホール効果の起源がバルクではなく、表面状態によるものであることを明らかにしました。
論文掲載:室温強磁性半導体によるスピン注入の初実証
室温強磁性半導体によるスピン注入の初実証に関する研究成果はScientific Reports誌に掲載されました。本研究は東京大学との共同研究の成果です。
室温強磁性半導体の実現は固体物性と材料科学において、長年の夢の一つです。たとえば、2005年のScience誌に“Is it possible to create magnetic semiconductors that work at room temperature?”は125重要課題の一つとして掲載されています(125 big questions that face scientific inquiry over the next quarter-century. Commemorative issue celebrating the 125th anniversary of the science magazine)。しかし、今迄に研究された強磁性半導体、たとえばGaMnAsは室温よりキュリー温度が低く、室温動作が極めて困難でした。一方、我々はFe系強磁性半導体を提案し、2012年に世界初のn型強磁性半導体InFeAs, 2014年にp型室温強磁性半導体GaFeSb、さらに2018年にn型室温強磁性半導体InFeSbを実現してきました。しかし、以前にも、室温強磁性半導体を主張した研究も多くあり、その起源が未解明なものがほとんどであり、本当に真性な室温強磁性半導体が出来たのか、それとも半導体中の単なる磁性偏析の粒子だけなのか、議論が多くありました。一時期には、強磁性半導体の研究に対する不信感から、UMO (Unidentified Magnetic Object)と批判されてきました。ちなみに、高温超伝導でもUSO (Unidentified Superconducting Object)という言葉もあり、先日にNature誌に掲載された室温超電導の論文が取り下げられたばかりです。強磁性半導体においても、本当に室温強磁性ができたかどうか、単に磁性の評価だけでなく、他面的に証明する必要がありました。
今回に我々は室温強磁性半導体GaFeSbを用いて、重要な機能の一つ「スピン注入機能」をスピンポンピング法およびトポロジカル絶縁体BiSbの巨大な逆スピンホール効果を用いて実現しました(図1)。これにより、我々が開発に成功した強磁性半導体はちゃんと室温でスピン注入源として動作できることを示し、真性な室温強磁性半導体であることを示しました。
図1.BiSbトポロジカル絶縁体/GaFeSb強磁性半導体におけるスピンポンプピングによるスピン注入および逆スピンホール効果による起電力の発生。
論文掲載:超高密度磁気記録4 Tbit/in2に向けた新しい磁気センサー技術
超高密度磁気記録4 Tbit/in2に向けた新しい磁気センサー技術「SOTセンサー」に関する研究成果がApplied Physics Letters誌に掲載されました。本研究はスト―レージ大手メーカのWestern Digitals社との共同研究の成果です。
従来のTMR効果を用いたTMRセンサーは限界に向かいつつあります。これは、TMRセンサーには、固定層を含み、最低でも2の磁性層が必要なため、20 nm以下の微細なデバイスの作製が困難な他、熱雑音やスピン移行トルク雑音が増大するためです。そこで、逆スピンホール効果を用いるSOTセンサー(図1)を用いれば、TMRセンサーの問題点を解決できます。しかし、SOTセンサーを実現するためには、高いスピンホール効果を有する材料が必要です。従来の重金属を用いると、SOTセンサーの高いSNR比を実現できません。そこで、Pham研究室で開発したBiSbトポロジカル絶縁体を用いれば、高いSNR比を実現できることを理論的に示し、かつその実証を行いました。本研究成果により、超高密度磁気記録4 Tbit/in2の実現が大きく前進します。
図1:SOTセンサーの構造
論文掲載:300℃で低温成長したYPtBiの巨大なスピンホール効果を実現
Si Back-end-of-line (BEOL)プロセスに適応すべく300℃で低温成長したYPtBiの巨大なスピンホール効果を実現した研究成果はAIP Advances 誌(オープンアクセス)に掲載されました。
YPtBiはトポロジカルハーフホイスラ合金で、高いスピンホール効果と高い熱耐久性を両立できる物質であり、スピン軌道トルクスピンデバイスのスピン流源として有望です。しかし、YPtBiはゼロギャップ半導体のため、バルクのキャリアを抑制するために、600℃の高温で製膜する必要がありました。今回の研究では、半導体Si回路のBEOLプロセスに適応できる温厚な温度300℃でもYPtBiを製膜できる条件を見だして、巨大なスピンホール効果を実現しました。
なお、本研究はキオクシア社から支援を得て行った研究です。